Search results for "Phase velocity"

showing 10 items of 24 documents

Local Rossby Wave Packet Amplitude, Phase Speed, and Group Velocity: Seasonal Variability and Their Role in Temperature Extremes

2020

AbstractTransient Rossby wave packets (RWPs) are a prominent feature of the synoptic to planetary upper-tropospheric flow at the midlatitudes. Their demonstrated role in various aspects of weather and climate prompts the investigation of characteristic properties like their amplitude, phase speed, and group velocity. Traditional frameworks for the diagnosis of the two latter have so far remained nonlocal in space or time, thus preventing a detailed view on the spatiotemporal evolution of RWPs. The present work proposes a method for the diagnosis of horizontal Rossby wave phase speed and group velocity locally in space and time. The approach is based on the analytic signal of upper-troposphe…

Atmospheric ScienceAmplitude010504 meteorology & atmospheric sciencesNetwork packetClimatologyRossby waveGroup velocityPhase velocity010502 geochemistry & geophysicsGeodesy01 natural sciencesGeology0105 earth and related environmental sciencesJournal of Climate
researchProduct

Nondiffracting Bessel plasmons.

2011

We report on the existence of nondiffracting Bessel surface plasmon polaritons (SPPs), advancing at either superluminal or subluminal phase velocities. These wave fields feature deep subwavelength FWHM, but are supported by high-order homogeneous SPPs of a metal/dielectric (MD) superlattice. The beam axis can be relocated to any MD interface, by interfering multiple converging SPPs with controlled phase matching. Dissipative effects in metals lead to a diffraction-free regime that is limited by the energy attenuation length. However, the ultra-localization of the diffracted wave field might still be maintained by more than one order of magnitude. This research was funded by the Spanish Mini…

DiffractionLightPhase (waves)Physics::OpticsSurface plasmons01 natural sciences010309 opticssymbols.namesakeOptics0103 physical sciencesScattering RadiationComputer Simulation010306 general physicsPropagationPlasmonÓpticaPhysicsbusiness.industrySurface plasmonEquipment DesignSurface Plasmon ResonanceSurface plasmon polaritonAtomic and Molecular Physics and OpticsRefractometrySurface wavesymbolsPhase velocitybusinessBessel functionOptics express
researchProduct

Isotropic compensation of diffraction-driven angular dispersion

2007

We report on an optical arrangement capable of compensating angular dispersion of paraxial wave fields developed by diffractive optical elements (DOEs). Schematically, the system is a beam expander in which two phase-only zone plates have been inserted, remaining afocal the coupled system. The DOE, which induces a continuous set of dispersive tilted plane waves, is placed at a specific position within the proposed setup providing an output spectrum with achromatic angular deviation. A directional matching between phase fronts and pulse fronts of output wave packets is demonstrated.

DiffractionWavefrontPhysicsAfocal photographyOpticsbusiness.industryDispersion (optics)Paraxial approximationPlane waveBeam expanderPhase velocitybusinessAtomic and Molecular Physics and OpticsOptics Letters
researchProduct

Coded Excitation of the Fundamental Flexural Guided Wave in Coated Bone Phantoms

2017

There is an increasing interest of using ultrasonic guided waves to assess long cortical bones. In particular, a method of ultrasonic estimation of cortical thickness based on the fundamental flexural guided wave (FFGW), generally consistent with the A0 Lamb mode, has proven to be promising in vitro and modeling studies. Soft-tissue coating on top of the bone makes, however, the related in vivo application challenge. Visibility of FFGW on top of the soft tissue is not good due to the characteristic displacement profile of this mode, and due to its relatively high attenuation in the bone and surrounding tissue. Moreover, the soft tissue provides a direct propagation path for ultrasonic modes…

Guided wave testingMaterials sciencebusiness.industryAcousticsUltrasoundengineering.materialSignalTransducermedicine.anatomical_structureCoatingengineeringmedicineUltrasonic sensorCortical bonePhase velocitybusiness
researchProduct

Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms.

2013

Abstract Photo-acoustic (PA) imaging was combined with skeletal quantitative ultrasound (QUS) for assessment of human long bones. This approach permitted low-frequency excitation and detection of ultrasound so as to efficiently receive the thickness-sensitive fundamental flexural guided wave (FFGW) through a coating of soft tissue. The method was tested on seven axisymmetric bone phantoms, whose 1- to 5-mm wall thickness and 16-mm diameter mimicked those of the human radius. Phantoms were made of a composite material and coated with a 2.5- to 7.5-mm layer of soft material that mimicked soft tissue. Ultrasound was excited with a pulsed Nd:YAG laser at 1064-nm wavelength and received on the s…

Materials scienceAcoustics and UltrasonicsBiophysics02 engineering and technology01 natural sciencesSensitivity and SpecificityImaging phantomBone and Bones010309 opticsOpticsLamb wavesFlexural strengthCoated Materials BiocompatibleBone Density0103 physical sciencesmedicineHumansRadiology Nuclear Medicine and imagingGuided wave testingRadiological and Ultrasound Technologyta114business.industryPhantoms ImagingLasersUltrasoundReproducibility of ResultsEquipment Design021001 nanoscience & nanotechnologyEquipment Failure Analysismedicine.anatomical_structureSoundAcoustic StimulationElasticity Imaging TechniquesUltrasonic sensorCortical bonePhase velocity0210 nano-technologybusinessPhotic StimulationDensitometryUltrasound in medicinebiology
researchProduct

Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber

2009

International audience; We present an experimental analysis of polarization and intermodal noise-seeded parametric amplification, in which dispersion is phase matched by group velocity mismatch between either polarization or spatial modes in birefringent holey fiber with elliptical core composed of a triple defect. By injecting quasi-CW intense linearly polarized pump pulses either parallel or at 45 degrees with respect to the fiber polarization axes, we observed the simultaneous generation of polarization or intermodal modulation instability sidebands. Furthermore, by shifting the pump wavelength from 532 to 625 nm, we observed a shift of polarization sidebands from 3 to 8 THz, whereas int…

Materials sciencePhysics::OpticsPolarization-maintaining optical fiber02 engineering and technology01 natural sciences[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]010309 opticsFour-wave mixing020210 optoelectronics & photonicsOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringphase modulation[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]birefringence; dispersion (waves); phase modulationPolarization rotatorBirefringencebirefringencebusiness.industryLinear polarizationPolarization (waves)Atomic and Molecular Physics and Optics[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Group velocityPhase velocitybusinessdispersion (waves)
researchProduct

Controlling the carrier-envelope phase of few-cycle focused laser beams with a dispersive beam expander

2008

We report on a procedure to focalize few-cycle laser pulses in dispersive media with controlled waveform. Stationarity of the carrier-envelope phase for extended depth of focus is attained by shaping the spatial dispersion of the ultrashort beam. An adjustable group velocity is locally tuned in order to match a prescribed phase velocity at focus. A hybrid diffractive-refractive lens system is proposed to drive the wavefield to an immersion microscope objective under convenient broadband modulation. Numerical simulations demonstrate robustness over positioning of this dispersive beam expander.

Materials sciencebusiness.industryCarrier-envelope phaseNonlinear opticsPhysics::OpticsFísicaLaser01 natural sciencesPulse shapingAtomic and Molecular Physics and Opticslaw.invention010309 opticsOpticslaw0103 physical sciencesGroup velocityWaveformBeam expanderPhase velocityOptica010306 general physicsbusiness
researchProduct

Photo-acoustic excitation and detection of guided ultrasonic waves in bone samples covered by a soft coating layer

2012

Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft …

Materials scienceengineering.material01 natural sciences030218 nuclear medicine & medical imaginglaw.invention010309 optics03 medical and health sciences0302 clinical medicineOpticsCoatinglaw0103 physical sciencesmedicineGuided wave testingta114business.industryWavelengthTransducermedicine.anatomical_structureengineeringCortical boneUltrasonic sensorsense organsPhase velocitybusinessWaveguideSPIE Proceedings
researchProduct

Direction-dependent elastic properties and phononic behavior of PMMA/BaTiO 3 nanocomposite thin films

2017

Determination of the anisotropic mechanical properties of nanostructured hybrid films is of great importance to improve fabrication and to enable reliable utility. Here, we employ spontaneous Brillouin light spectroscopy to record the phononic dispersion relation along the two symmetry directions in a supported PMMA (poly(methylmethacrylate))-BaTiO3 hybrid superlattice (SL) with a lattice constant of about 140 nm. Several dispersive elastic modes are resolved for in-plane wave propagation, whereas along the periodicity direction the SL opens a wide propagation stop band for hypersonic phonons and near UV photons both centered at about 280 nm. A thorough theoretical analysis based on the fin…

NanocompositeMaterials scienceCondensed matter physicsWave propagationPhononbusiness.industrySuperlatticeGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesBrillouin zoneCondensed Matter::Materials ScienceOpticsDispersion relation0103 physical sciencesPhysical and Theoretical ChemistryPhase velocity010306 general physics0210 nano-technologyAnisotropybusinessThe Journal of Chemical Physics
researchProduct

High-gradient testing of an $S$-band, normal-conducting low phase velocity accelerating structure

2020

A novel high-gradient accelerating structure with low phase velocity, $v/c=0.38$, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC $100\text{ }\text{ }\mathrm{MV}/\mathrm{m}$ high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward…

Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Field (physics)[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]cavityType (model theory)01 natural sciencesp: accelerationLinear particle accelerator0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsReview ArticlesPhysics010308 nuclear & particles physicsvelocity: lowPulse durationSurfaces and Interfaceslinear acceleratorgradient: highAccelerators and Storage Ringsvelocity: phasePulse (physics)particle: nonrelativisticDistribution (mathematics)lcsh:QC770-798Atomic physicsPhase velocityEnergy (signal processing)performance
researchProduct